Abstract
We consider a discrete time biased random walk conditioned to avoid Bernoulli obstacles on ${\mathbb Z}^d$ ($d\geq 2$) up to time $N$. This model is known to undergo a phase transition: for a large bias, the walk is ballistic whereas for a small bias, it is sub-ballistic. We prove that in the sub-ballistic phase, the random walk is contained in a ball of radius $O(N^{1/(d+2)})$, which is the same scale as for the unbiased case. As an intermediate step, we also prove large deviation principles for the endpoint distribution for the unbiased random walk at scales between $N^{1/(d+2)}$ and $o(N^{d/(d+2)})$. These results improve and complement earlier work by Sznitman [Ann. Sci. Ecole Norm. Sup. (4), 28(3):345--370, 371--390, 1995].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.