Abstract

The maximum diversity problem (MDP) aims to select a subset with a predetermined number of elements from a given set, maximizing the diversity among them. This NP-hard problem requires efficient algorithms that can generate high-quality solutions within reasonable computational time. In this study, we propose a novel approach that combines the biased random-key genetic algorithm (BRKGA) with local search to tackle the MDP. Our computational study utilizes a comprehensive set of MDPLib instances, and demonstrates the superior average performance of our proposed algorithm compared to existing literature results. The MDP has a wide range of practical applications, including biology, ecology, and management. We provide future research directions for improving the algorithm’s performance and exploring its applicability in real-world scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.