Abstract
In this paper we introduce a new approach to determine the bias in localization algorithms by mixing Taylor series and Jacobian matrices, which results in an easily calculated analytical expression for the bias. To illustrate this approach, we analyze the proposed method in two situations using localization algorithms based on distance measurements. Monte Carlo simulations verify that the proposed method is consistent with the performance of localization algorithms, which means the bias-correction method can correct the bias in most situations except when there is a collinearity problem. Although the method is analyzed in distance-based localization algorithms, it can be extended to other kinds of localization algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.