Abstract

The within-group estimator (same as the least squares dummy variable estimator) of the dominant root in dynamic panel regression is known to be biased downwards. This article studies recursive mean adjustment (RMA) as a strategy to reduce this bias for AR(p) processes that may exhibit cross-sectional dependence. Asymptotic properties for N,T→∞ jointly are developed. When ( log 2T)(N/T)→ζ, where ζ is a non-zero constant, the estimator exhibits nearly negligible inconsistency. Simulation experiments demonstrate that the RMA estimator performs well in terms of reducing bias, variance and mean square error both when error terms are cross-sectionally independent and when they are not. RMA dominates comparable estimators when T is small and/or when the underlying process is persistent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.