Abstract
Nonparametric and semiparametric regression models are useful statistical regression models to discover nonlinear relationships between the response variable and predictor variables. However, optimal efficient estimators for the nonparametric components in the models are biased which hinders the development of methods for further statistical inference. In this paper, based on the local linear fitting, we propose a simple bias reduction approach for the estimation of the nonparametric regression model. Our approach does not need to use higher-order local polynomial regression to estimate the bias, and hence avoids the double bandwidth selection and design sparsity problems suffered by higher-order local polynomial fitting. It also does not inflate the variance. Hence it can be easily applied to complex statistical inference problems. We extend our approach to varying coefficient models, to estimate the variance function, and to construct simultaneous confidence band for the nonparametric regression function. Simulations are carried out for comparisons with existing methods, and a data example is used to investigate the performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.