Abstract
<?Pub Dtl=""?> This paper proposes two methods to reduce the bias of the well-known algebraic explicit solution (Chan and Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Trans. Signal Process., vol. 42, pp. 1905–1915, Aug. 1994) for source localization using TDOA. Bias of a source location estimate is significant when the measurement noise is large and the geolocation geometry is poor. Bias also dominates performance when multiple times of independent measurements are available such as in UWB localization or in target tracking. The paper starts by deriving the bias of the source location estimate from Chan and Ho. The bias is found to be considerably larger than that of the Maximum Likelihood Estimator. Two methods, called BiasSub and BiasRed, are developed to reduce the bias. The BiasSub method subtracts the expected bias from the solution of Chan and Ho's work, where the expected bias is approximated by the theoretical bias using the estimated source location and noisy data measurements. The BiasRed method augments the equation error formulation and imposes a constraint to improve the source location estimate. The BiasSub method requires the exact knowledge of the noise covariance matrix and BiasRed only needs the structure of it. Analysis shows that both methods reduce the bias considerably and achieve the CRLB performance for distant source when the noise is Gaussian and small. The BiasSub method can nearly eliminate the bias and the BiasRed method is able to lower the bias to the same level as the Maximum Likelihood Estimator. The BiasRed method is extended for TDOA and FDOA positioning. Simulations corroborate the performance of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.