Abstract

The bias-reduced log-periodogram estimator of Andrews and Guggenberger (2003, Econometrica 71, 675–712) for the long-memory parameter d in a stationary long-memory time series reduces the asymptotic bias of the original log-periodogram estimator of Geweke and Porter-Hudak (1983) by an order of magnitude but inflates the asymptotic variance by a multiplicative constant cr, for example, c1 = 2.25 and c2 = 3.52. In this paper, we introduce a new, computationally attractive estimator by taking a weighted average of estimators over different bandwidths. We show that, for each fixed r ≥ 0, the new estimator can be designed to have the same asymptotic bias properties as but its asymptotic variance is changed by a constant cr* that can be chosen to be as small as desired, in particular smaller than cr. The same idea is also applied to the local-polynomial Whittle estimator in Andrews and Sun (2004, Econometrica 72, 569–614) leading to the weighted estimator . We establish the asymptotic bias, variance, and mean-squared error of the weighted estimators and show their asymptotic normality. Furthermore, we introduce a data-dependent adaptive procedure for selecting r and the bandwidth m and show that up to a logarithmic factor, the resulting adaptive weighted estimator achieves the optimal rate of convergence. A Monte Carlo study shows that the adaptive weighted estimator compares very favorably to several other adaptive estimators.We thank a co-editor and three referees for very helpful suggestions. We are grateful for the constructive comments offered by Marc Henry, Javier Hidalgo, and especially Katsumi Shimotsu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call