Abstract

The Cu ion migration behavior of a Pt/Cu/HfO2/Pt structure, which is an oxide-based resistive random access memory (ReRAM) and exhibits resistance switching behavior at voltages of ±0.8 V, was investigated by hard X-ray photoelectron spectroscopy under a bias operation. A forward bias application, during switching from a high resistive state (HRS) to a low resistive state, reduced the Cu2O bonding state at the interface and the intensity ratio of Cu 2p3/2/Hf 3d5/2 (Cu/Hf) by 23 ± 5%, providing evidence of reductions in unintentionally formed Cu2O and Cu diffusion into the HfO2 layer. After switching to HRS again, Cu/Hf increased by 15 ± 5%, indicating that the Cu ion moved back to the top electrode side, though oxygen showed no bias voltage dependence. Consequently, the Cu ion has a key role in the switching. We directly observed the Cu migration behavior related to the resistive change at the Cu/HfO2 interface under bias operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call