Abstract

For real-time monitoring of PCR amplification of DNA, quantitative PCR (qPCR) assays use various fluorescent reporters. DNA binding molecules and hybridization reporters (primers and probes) only fluoresce when bound to DNA and result in the non-cumulative increase in observed fluorescence. Hydrolysis reporters (TaqMan® probes and QZyme™ primers) become fluorescent during DNA elongation and the released fluorophore remains fluorescent during further cycles; this results in a cumulative increase in observed fluorescence. Although the quantification threshold is reached at a lower number of cycles when fluorescence accumulates, in qPCR analysis no distinction is made between the two types of data sets. Mathematical modeling shows that ignoring the cumulative nature of the data leaves the estimated PCR efficiency practically unaffected but will lead to at least one cycle underestimation of the quantification cycle ( C q value), corresponding to a 2-fold overestimation of target quantity. The effect on the target–reference ratio depends on the PCR efficiency of the target and reference amplicons. The leftward shift of the C q value is dependent on the PCR efficiency and with sufficiently large C q values, this shift is constant. This allows the C q to be corrected and unbiased target quantities to be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.