Abstract

AbstractMeasurement of intracellular temperature in a fast, accurate, reliable, and remote manner is crucial for the understanding of cellular processes. Nanothermometers based on the green fluorescence protein (GFP) are of special interest because intracellular temperature readouts can be obtained from the analysis of the polarization state of its luminescence. Despite the good results provided by GFP thermometers, the reliability of their intracellular thermal readouts is still a question of debate. Here, light is shed on this issue by introducing cell activity as a relevant bias mechanism that prevents the use of GFP for reliable intranuclear thermal measurements. Experimental evidence that this lack of reliability can affect not only GFP but also other widely used thermometers such as semiconductor nanocrystals is provided. It is discussed how differences observed between calibration curves obtained in presence and absence of cell activity can inform about the presence of bias. The presented results and discussion are aimed to warn the community working in intracellular thermometry and encourage authors to approach the issue in a conscious manner. The performance and reliability of the chosen intracellular thermometers must be judiciously assessed. This is the only way intracellular thermometry can progress and deliver indisputable results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call