Abstract

Abstract. Dynamical downscaling of future projections of global climate model outputs can provide useful information about plausible and possible changes to water resource availability, for which there is increasing demand in regional water resource planning processes. By explicitly modelling climate processes within and across global climate model grid cells for a region, dynamical downscaling can provide higher-resolution hydroclimate projections and independent (from historical time series), physically plausible future rainfall time series for hydrological modelling applications. However, since rainfall is not typically constrained to observations by these methods, there is often a need for bias correction before use in hydrological modelling. Many bias-correction methods (such as scaling, empirical and distributional mapping) have been proposed in the literature, but methods that treat daily amounts only (and not sequencing) can result in residual biases in certain rainfall characteristics, which flow through to biases and problems with subsequently modelled runoff. We apply quantile–quantile mapping to rainfall dynamically downscaled by the NSW and ACT Regional Climate Modelling (NARCliM) Project in the state of Victoria, Australia, and examine the effect of this on (i) biases both before and after bias correction in different rainfall metrics, (ii) change signals in metrics in comparison to the bias and (iii) the effect of bias correction on wet–wet and dry–dry transition probabilities. After bias correction, persistence of wet states is under-correlated (i.e. more random than observations), and this results in a significant bias (underestimation) of runoff using hydrological models calibrated on historical data. A novel representation of quantile–quantile mapping is developed based on lag-one transition probabilities of dry and wet states, and we use this to explain residual biases in transition probabilities. Representing quantile–quantile mapping in this way demonstrates that any quantile mapping bias-correction method is unable to correct the underestimation of autocorrelation of rainfall sequencing, which suggests that new methods are needed to properly bias-correct dynamical downscaling rainfall outputs.

Highlights

  • There is a growing and ongoing need for information about plausible and possible changes to water resource availability in the future due to climate change

  • Dynamical downscaling has potential to provide this type of information; there remain challenges associated with the use of these data

  • We look at the extent of biases in rainfall, which necessitate daily bias correction, and the effect of quantile–quantile mapping (QQM) bias correction on rainfall sequencing metrics that are important for runoff generation

Read more

Summary

Introduction

There is a growing and ongoing need for information about plausible and possible changes to water resource availability in the future due to climate change. End users of hydroclimate projections are interested in more spatially detailed information, information on water metrics for low- and highflow events, and better-predicted interdecadal metrics (Potter et al, 2018). We examine the suitability of NARCliM projections for providing hydroclimate projections for south-eastern Australia. We look at the extent of biases in rainfall, which necessitate daily bias correction, and the effect of quantile–quantile mapping (QQM) bias correction on rainfall sequencing metrics that are important for runoff generation. Subsequent research in a related paper (Charles et al, 2020) focuses attention on the effect of these biases on runoff

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call