Abstract
We present a theoretical study of the bias in the copolar correlation coefficient caused by cross-polar radiation patterns and by unmatched horizontal and vertical copolar radiation patterns. The analysis of the bias induced by cross-polarization radiation is carried out for both modes of operation of polarimetric radars, designated as the simultaneous transmission and reception of horizontally and vertically polarized waves and the alternate transmission of horizontally and vertically polarized waves, respectively. The bias caused by unmatched horizontal and vertical copolar radiation patterns as a function of slight differences in pointing angles and beamwidths is also analyzed. In well-designed weather radars, for the purpose of hydrometeor classification, the overall acceptable bias in the copolar correlation coefficient should be less than about 0.01. The levels of cross-to-copolar gain ratios for acceptable performance are indicated. Ultimately, pointing angle and beamwidth tolerances are indicated for horizontal and vertical copolar antenna patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.