Abstract

Ongoing discussions on the nature of storage in visual working memory have mostly focused on 2 theoretical accounts: On one hand we have a discrete-state account, postulating that information in working memory is supported with high fidelity for a limited number of discrete items by a given number of "slots," with no information being retained beyond these. In contrast with this all-or-nothing view, we have a continuous account arguing that information can be degraded in a continuous manner, reflecting the amount of resources dedicated to each item. It turns out that the core tenets of this discrete-state account constrain the way individuals can express confidence in their judgments, excluding the possibility of biased confidence judgments. Importantly, these biased judgments are expected when assuming a continuous degradation of information. We report 2 studies showing that biased confidence judgments can be reliably observed, a behavioral signature that rejects a large number of discrete-state models. Finally, complementary modeling analyses support the notion of a mixture account, according to which memory-based confidence judgments (in contrast with guesses) are based on a comparison between graded, fallible representations, and response criteria. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.