Abstract

Developing a multi-functional green energy device that propels sustainable energy development and concurrently purifies environmental pollutants offers an irresistibly compelling vision for a cleaner future. Herein, we reported a bias-free glucose/O2 bio-photoelectrochemical system (BPECS) for both energy conversion and phenolic pollutants degradation. Coupling a glucose dehydrogenase (GDH) modified self-assembled meso-tetrakis(4-carboxyphenyl)-porphyrin (SA-TCPP)-sensitized TiO2 biophotoanode for glucose oxidation and nitrogen/oxygen doped cobalt single-atom catalyst (CoNOC) cathode for two-electron oxygen reduction, both solar and biochemical energies were converted into electric power in BPECS with a maximum power density of 296.98 μW cm-2 (0.49 V). Working in synergy with horseradish peroxidase (HRP) biocatalysis, the cathode-generated H2O2, a by-product, is effectively redeployed for degrading phenol, attaining an impressive degradation efficiency of approximately 100% within 60 minutes. Additionally, aiming to scale up this ingenious BPECS approach, peroxidase-mimicking Co3O4 nanozyme were engineered as a substitute for natural HRP. Remarkably, these nanozyme demonstrated a comparable degradation efficiency, achieving the same result in 90 minutes. In this work, our results demonstrate that this bias-free glucose/O2 BPECS model marks a significant step forward in integrating renewable energy harvesting with environmental remediation, but also opens new avenues for the versatile application of nanozymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.