Abstract

Magnetic resonance imaging (MRI) images suffer from intensity inhomogeneity or bias field causes due to smooth intensity variations of the same tissue across the image region. This paper presents a new method called Bias Estimated Spatial Fuzzy C-means (BESFCM) algorithm for intensity inhomogeneity estimation and segmentation of MRI images at the same time. First, we formulate a new local fuzzy membership function that includes a probability function of a pixel considering its spatial neighbourhood information. Then, we introduce a new clustering center and weighted joint membership functions using the local and global membership values. Finally, MRI images are segmented and bias field is estimated by formulating an objective function using the new cluster centers and joint membership functions. The simulation results show that the resulting BESFCM algorithm estimates intensity inhomogeneity and improves the segmentation results as compared to other FCM-based clustering algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.