Abstract

We consider a bi-dimensional sheet consisting of two orthogonal families of inextensible fibres. Using the representation due to Rivlin and Pipkin for admissible placements, i.e. placements preserving the lengths of the inextensible fibres, we numerically simulate a standard bias extension test on the sheet, solving a non-linear constrained optimization problem. Several first and second gradient deformation energy models are considered, depending on the shear angle between the fibres and on its gradient, and the results obtained are compared. The proposed numerical simulations will be helpful in designing a systematic experimental campaign aimed at characterizing the internal energy for physical realizations of the ideal pantographic structure presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.