Abstract
<p>In the Northwest Atlantic (NWA), including the Labrador Sea, interactions between the atmosphere, ocean circulation, and sea ice play a critical role in regulating the global climate system. The ocean and climate in this region observe rapid and unprecedented, anthropogenically forced changes to the physical environment and biosphere with downstream effects. Future projections of NWA circulation and sea ice can help address pressing questions about these changes and mitigate their potential impacts on the global carbon cycle, coastal communities, and transportation. However, the spatial resolution of current climate models is often insufficient to accurately represent important features in the NWA, such as the location and strength of the Gulf Stream and Labrador Current and their dynamical interactions. This can lead to biases in the model’s mean state, and a misrepresentation of the temporal and spatial scales of ocean variability, e.g., mesoscale eddies, deep convection. Regional ocean models with grid spacing <10 km, forced by global climate simulations, can be used to improve estimates of historical and future circulation and hydrography. However, given the limited spatial resolution and biases in global climate models, a challenge of downscaling their simulations is the appropriate reconstruction of the forcing fields.</p><p>Here, we present preliminary results of future projections of NWA circulation and sea ice based on downscaled global climate simulations. These projections are performed using an eddy-resolving, coupled circulation-sea ice model based on the Regional Ocean Modeling System (ROMS) and the Los Alamos Sea Ice Model (CICE). We will focus on the value of correcting biases in the mean and variance of the forcing. We further explore the need of including missing spatial and temporal scales in the atmospheric forcing that are not captured by the global models. Implications for the design of model experiments for future projections will be discussed.</p>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.