Abstract
We in this paper investigate smoothed score function based confidence regions for parameters in single-index models. Because a plug-in estimator of nonparametric link function causes the bias of smoothed score function to be non-negligible, the limit of the score function is asymptotically normal with a non-zero mean due to the slow convergence rate of nonparametric estimation. A bias-corrected smoothed score function is recommended for achieving centered normal limit without under-smoothing or high order kernel, and then the confidence region can be constructed by chi-square distribution. Simulation studies are carried out to assess the performance of bias-corrected local likelihood, and to compare with normal approximation approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.