Abstract
In this paper, we present an estimation approach based on generalized estimating equations and a variable selection procedure for single-index models when the observed data are clustered. Unlike the case of independent observations, bias-correction is necessary when general working correlation matrices are used in the estimating equations. Our variable selection procedure based on smooth-threshold estimating equations (Ueki (2009) [23]) can automatically eliminate irrelevant parameters by setting them as zeros and is computationally simpler than alternative approaches based on shrinkage penalty. The resulting estimator consistently identifies the significant variables in the index, even when the working correlation matrix is misspecified. The asymptotic property of the estimator is the same whether or not the nonzero parameters are known (in both cases we use the same estimating equations), thus achieving the oracle property in the sense of Fan and Li (2001) [10]. The finite sample properties of the estimator are illustrated by some simulation examples, as well as a real data application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.