Abstract

A bias-controlled spin-filter and spin memory is theoretically proposed, which consists of the junction with a single-molecule magnet sandwiched between the nonmagnetic and ferromagnetic (FM) leads. By applying different voltage pulses V write across the junction, the spin direction of the single-molecule magnet can be controlled to be parallel or anti-parallel to the magnetization of the FM lead, and the spin direction of SMM can be “read out” either by the magneto-resistance or by the spin current with another series of small voltage pulses V probe. It is shown that the polarization of the spin current is extremely high (up to 100%) and can be manipulated by the full-electric manner. This device scheme can be compatible with current technologies and has potential applications in high-density memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call