Abstract

A dry-etch spark ablation method was used to produce calcium disilicide (CaSi 2/Si) layers on silicon (Si) surfaces for the electrochemical growth of apatitic phosphates (calcium phosphate, CaP). CaSi 2/Si composite electrodes readily calcify in vitro under the application of a small electric potential, and with proper treatment, the electrodeposition of CaP is localized to the sparked areas. In addition to increasing the local concentration of calcium, interfacial layers of CaSi 2 on Si exhibit exceptional site selectivity towards CaP formation under bias due to the difference in conductivity between Si and CaSi 2. The proposed mechanism for bias-assisted biomineralization of CaSi 2/Si layers on spark-processed Si accounts for the physicochemical properties of deposited CaP films. This work also describes routes to surface modification of calcified composite electrodes with medicinally relevant compounds such as alendronate and norfloxacin. To assess the suitability of this material as a drug-delivery platform, release of the latter compound was also monitored as a function of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.