Abstract

ObjectivesTo assess fairness and bias of a previously validated machine learning opioid misuse classifier.Materials & MethodsTwo experiments were conducted with the classifier’s original (n = 1000) and external validation (n = 53 974) datasets from 2 health systems. Bias was assessed via testing for differences in type II error rates across racial/ethnic subgroups (Black, Hispanic/Latinx, White, Other) using bootstrapped 95% confidence intervals. A local surrogate model was estimated to interpret the classifier’s predictions by race and averaged globally from the datasets. Subgroup analyses and post-hoc recalibrations were conducted to attempt to mitigate biased metrics.ResultsWe identified bias in the false negative rate (FNR = 0.32) of the Black subgroup compared to the FNR (0.17) of the White subgroup. Top features included “heroin” and “substance abuse” across subgroups. Post-hoc recalibrations eliminated bias in FNR with minimal changes in other subgroup error metrics. The Black FNR subgroup had higher risk scores for readmission and mortality than the White FNR subgroup, and a higher mortality risk score than the Black true positive subgroup (P < .05).DiscussionThe Black FNR subgroup had the greatest severity of disease and risk for poor outcomes. Similar features were present between subgroups for predicting opioid misuse, but inequities were present. Post-hoc mitigation techniques mitigated bias in type II error rate without creating substantial type I error rates. From model design through deployment, bias and data disadvantages should be systematically addressed.ConclusionStandardized, transparent bias assessments are needed to improve trustworthiness in clinical machine learning models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.