Abstract

New chloro-substituted biarylmethoxyphenyl piperidine-4-carboxamides were synthesized and assayed in vitro as inhibitors of the blood coagulation enzymes factor Xa (fXa) and thrombin. An investigation of effects of the amidine and isopropyl groups attached at the piperidine nitrogen and 5-(halogenoaryl)isoxazol-3-yl groups as biaryl substituents led us to identify new compounds which proved to be selective fXa inhibitors, with inhibition constants in the low nanomolar range. The most potent compound 21e, that incorporates 2-Cl-thiophen-5-yl group as the P1 motif and 1-isopropylpiperidine P4 group, inhibited fXa with Ki value of 0.3nM and very high selectivity over thrombin and some other tested serine proteases, achieving moderate levels of anticoagulant activity in the low micromolar range, as assessed by the prothrombin time clotting assay (PT2=3.30μM). Based on reliable docking simulations, molecular modeling provided a rationale for interpreting structure–activity relationships. The predicted binding modes highlighted the structural requirements for addressing the subsites S1 and S4 of the fXa enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call