Abstract

Galactosemia is caused by metabolic disturbances at various stages of galactose metabolism, including deficiencies in enzymes involved in the Leloir pathway (GALT, GALK1, and GALE). Nevertheless, the etiology of galactosemia has not been identified in a subset of patients. This study aimed to explore the causes of unexplained galactosemia. Trio-based exome sequencing and/or Sanger sequencing was performed in eight patients with unexplained congenital galactosemia. In vitro enzymatic assays and immunoblot assays were performed to confirm the pathogenicity of the variants. The highest blood galactose levels observed in each patient were 17.3-41.9 mg/dl. Bilateral cataracts were observed in two patients. In all eight patients, we identified biallelic variants (p.Arg82*, p.Ile99Leufs*46, p.Gly142Arg, p.Arg267Gly, and p.Trp311*) in the GALM encoding galactose mutarotase, which catalyzes epimerization between β- and α-D-galactose in the first step of the Leloir pathway. GALM enzyme activities were undetectable in lymphoblastoid cell lines established from two patients. Immunoblot analysis showed the absence of the GALM protein in the patients' peripheral blood mononuclear cells. In vitro GALM expression and protein stability assays revealed altered stabilities of the variant GALM proteins. Biallelic GALM pathogenic variants cause galactosemia, suggesting the existence of type IV galactosemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.