Abstract

Photocatalytic activity is largely restricted by insufficient photoabsorption and intense recombination between charge carriers. Here, we first synthesized Bi4NbO8Cl nanosheets with {001} exposing facets by a molten-salt growth method, which shows largely promoted photocatalytic performance for the degradation of tetracycline (TC) and bisphenol A (BPA) in comparison with Bi4NbO8Cl particles obtained by solid-state reaction. The 2D/2D Bi4NbO8Cl/g-C3N4 heterojunction photocatalysts were then fabricated via high-energy ball-milling and post-sintering to realize intimate interfacial interaction. The photocatalytic activity of all the Bi4NbO8Cl/g-C3N4 composites largely enhances compared to Bi4NbO8Cl nanosheets and g-C3N4, also far exceeding the mechanically-mixed Bi4NbO8Cl nanosheets and g-C3N4. The impact of different reaction parameters on the photocatalytic degradation activities was investigated, including catalyst concentration, pH value and TC concentration. In addition, Bi4NbO8Cl/g-C3N4 also presents improved photocatalytic CO2 reduction activity for CO production. The large enhancement on photocatalytic activity of Bi4NbO8Cl/g-C3N4 composites is owing to the synergistic effect of favorable 2D/2D structure and construction of type II heterojunction with intimate interfacial interaction, thus boosting the charge separation. The formation of type II heterojunction was evidenced by selective photo-deposition of Pt and MnOx, which demonstrate that the reductive sites and oxidative sites are on Bi4NbO8Cl nanosheets and g-C3N4, respectively. This work may provide some insights into fabrication of efficient visible-light driven photocatalysts for environmental and energy applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call