Abstract

Solar-energy-driven CO2 hydrogenation is a promising strategy to alleviate the climate crisis. Methane is a desirable derivative of CO2 reduction. However, developing a photocatalyst for highly active and selective CH4 generation remains challenging. Herein, we report a double Z-scheme Bi3O4Cl/g-C3N4/Cd0.5Zn0.5S photocatalyst for efficient reduction of CO2 to CH4. In situ characterization techniques confirmed that the charge migration mechanism in Bi3O4Cl/g-C3N4/Cd0.5Zn0.5S promotes charge separation through double internal electric fields. As a result, the optimized C0.01B0.02C catalyst displayed a formation rate high up to 25.34 μmol g-1 h-1 and a selectivity of 96.52% of CH4. Moreover, the AQY of CO2 conversion on C0.01B0.02C (1.84%) was almost 41 times higher than that of the bare CN. This study provides a novel perspective to develop heterojunction photocatalysts for selective CO2 conversion to CH4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call