Abstract

The radioresistance of tumor cells is considered to be an Achilles' heel of cancer radiotherapy. Thus, an effective and biosafe radiosensitizer is highly desired but hitherto remains a big challenge. With the rapid progress of nanomedicine, multifunctional inorganic nanoradiosensitizers offer a new route to overcome the radioresistance and enhance the efficacy of radiotherapy. Herein, poly(vinylpyrrolidone) (PVP)-modified Bi2WO6 nanoplates with good biocompatibility were synthesized through a simple hydrothermal process and applied as a radiosensitizer for the enhancement of radiotherapy for the first time. On the one hand, the high- Z elements Bi ( Z = 83) and W ( Z = 74) endow PVP-Bi2WO6 with better X-ray energy deposition performance and thus enhance radiation-induced DNA damages. On the other hand, Bi2WO6 semiconductors exhibit significant photocurrent and photocatalytic-like radiocatalytic activity under X-ray irradiation, giving rise to the effective separation of electron/hole (e-/h+) pairs and subsequently promoting the generation of cytotoxic reactive oxygen species, especially hydroxyl radicals (•OH). The γ-H2AX and clonogenic assays demonstrated that PVP-Bi2WO6 could efficiently increase cellular DNA damages and colony formations under X-ray irradiation. These versatile features endowed PVP-Bi2WO6 nanoplates with enhanced radiotherapy efficacy in animal models. In addition, Bi2WO6 nanoplates can also serve as good X-ray computed tomography imaging contrast agents. Our findings provide an alternative nanotechnology strategy for tumor radiosensitization through simultaneous radiation energy deposition and radiocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call