Abstract

Semiconductor materials have been used for photocatalytic degradation since they were discovered to be useful for photocatalytic degradation. Many studies have been researched to improve the efficiency of photocatalytic degradation. Among them, the introduction of vacancies to improve the photocatalytic efficiency has been verified to be a more feasible method. In this study, we combined two-dimensional (2D) graphite carbon nitride (g-C3N4) nanosheets with oxygen-containing vacancy zero-dimensional (0D) Bi2WO6 (BWO-OV) quantum dots to prepare 2D-0D g-C3N4/Bi2WO6-OV composite catalyst. The use of Bi2WO6 containing oxygen vacancies enhanced the absorption of light and increased the generation of photogenerated carriers. In addition, the formation of heterojunction and the vacancy structure of Bi2WO6 promote the life of photogenerated carriers and improve the catalytic effect of the catalyst. This structure shows high efficiency in removing low concentration (0.5 ppm) of nitric oxide (NO) at room temperature. The efficiency of the composite catalyst is much higher than g-C3N4 or BWO-OV, and better than the composite g-C3N4/Bi2WO6 without oxygen vacancies. When applied to NO removal, the composite g-C3N4/Bi2WO6-OV-10 showed the best catalytic activity which was up to 61.2%. At the same time, five cycles of experiments show that the material has excellent stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call