Abstract

The peculiar properties of the gapless surface states with a Dirac cone shaped energy dispersion in topological insulators (TIs) enable promising applications in photodetection with an ultra-broad band and polarization sensitivity. Since many TIs can be easily grown on silicon (Si) substrates, TIs on Si could make an alternative route for photon detection of Si photonics. We present good device performances of a Si-based single-crystal bismuth telluride (Bi2Te3) photoconductive detector. Room temperature photo responses to 1064 nm and 1550 nm light illumination were demonstrated. Linear dependences of the photocurrent on both the incident light power and the bias voltage were observed. The main device parameters including responsivity and quantum efficiency were extracted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.