Abstract

The relaxor state of (Bi1/2K1/2)TiO3 exhibits promising dielectric properties for high-temperature capacitor applications, but the spontaneous phase transition into the low-temperature ferroelectric state and the excessively high dielectric maximum temperature (Tm) at around 360 °C are the main drawback to this material. In this study we examined solid solutions of (Bi1/2K1/2)TiO3 with SrTiO3 to improve the temperature stability of the dielectric properties. As precursors to fabricate the sold-solution ceramics, fine powders of (Bi1/2K1/2)TiO3 and SrTiO3 were both synthesized by the hydrothermal method. Dense (1 − x)(Bi1/2K1/2)TiO3–xSrTiO3 ceramics with x up to 0.5 were then obtained by reaction sintering of the powders. A crystal structure analysis revealed that the average symmetry of the solid-solution ceramics changes from tetragonal to cubic with increasing the SrTiO3 content. Dielectric measurements showed that the incorporation of SrTiO3 into (Bi1/2K1/2)TiO3 stabilizes the relaxor state to shift Tm largely toward lower temperatures. As a result, the sample with x = 0.5 exhibited a temperature-stable dielectric permittivity of 1700 ± 15% over a wide temperature range from room temperature up to 260 °C. The electric-field and temperature dependences of the energy-storage properties of the sample were also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.