Abstract

Bi0.5Pb0.5FeO3 with 1:1 mixture of Bi and Pb having charge degrees of freedom at the A-site of perovskite oxide ABO3 is obtained for the first time by high-pressure synthesis. Comprehensive synchrotron X-ray powder diffraction, optical second harmonic generation, Mössbauer spectroscopy, and hard X-ray photoemission spectroscopy measurements revealed that Bi0.5Pb0.5FeO3 is a canted antiferromagnetic insulator crystalizing in a nonpolar tetragonal I4/mcm structure with √2a × √2a × 2a unit cell and has unusually Pb charge disproportionated Bi3+0.5Pb2+0.25Pb4+0.25Fe3+O3 charge distribution. The valence of transition metal M in Bi0.5Pb0.5MO3 changes from 3.5+ to 3+ and finally to 2+ from Mn to Fe and to Ni, from left to right in the periodic table as the 3d-level becomes deeper. The valences of Bi and Pb increase to compensate for the decrease in the M's valence, and Pb changes from 6s2 (2+) to 6s0 (4+) before Bi changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.