Abstract

ABSTRACT Solar based microgrids provide an environmentally benign alternative to conventional generation. However, their capital intensive structure and variability compels comprehensive examination of planning scenarios. This paper presents a bi-stage planning framework for a solar-battery microgrid. In the first stage of planning, sizing is carried out for autonomous operation. The second stage extends analysis to grid connected mode wherein four cases of microgrid operation are investigated. The analysis involves techno-socio-economic evaluation of constrained and unconstrained power flow. The parameters such as risk state probability, unmet load fraction, levelized cost of energy and social cost of carbon are used to evaluate and compare different cases for a solar-battery based microgrid located in Jaisalmer, Rajasthan, India. The results demonstrate that storage integration is essential for sustaining reliability in autonomous operation of microgrid. It can be inferred from the results that permitting reverse power flow renders considerable economic benefits and fetches lowest cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call