Abstract

Analytical, numerical, and experimental methods are used to investigate the utility of metamaterials in controlling harmonic waves based on both their amplitude and frequency. By programming the metamaterials to support bi-stable configurations (i.e., two stable phases), the required conditions are elucidated for a transition wave (i.e., a topological soliton) to nucleate due to harmonic excitation, causing a phase change within ourmetamaterial. As each of these phases has its own unique transmission frequency range, such phase change is harnessed to control harmonic waves based on both their amplitude and frequency. As a demonstration of principle, a low/high-pass filter is shown by tuning the same metamaterial to change phase; from transmission to attenuation and vice versa. In addition, phase transitions taking place while preserving the metamaterial's state of attenuation or transmission are shown. Such materials can continue their functionality (i.e., either attenuation or transmission of waves) while keeping a record of extreme events that can cause their transition (i.e., have memory). These metamaterials can be useful in the next generations of advanced and functional acoustic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.