Abstract

According to BI-RADS criteria, radiologists evaluate mammography images, and breast lesions are classified as malignant or benign. In this retrospective study, an evaluation was made on 264 mammogram images of 139 patients. First, data augmentation was applied, and then the total number of images was increased to 565. Two computer-aided models were then designed to classify breast lesions and BI-RADS categories. The first of these models is the support vector machine (SVM) based model, and the second is the convolutional neural network (CNN) based model. The SVM-based model could classify BI-RADS categories and malignant-benign discrimination with an accuracy rate of 86.42% and 92.59%, respectively. On the other hand, the CNN-based model showed 79.01% and 83.95% accuracy for BI-RADS categories and malignant benign discrimination, respectively. These results showed that a well-designed machine learning-based classification model can give better results than a deep learning model. Additionally, it can be used as a secondary system for radiologists to differentiate breast lesions and BI-RADS lesion categories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.