Abstract

The subharmonic topology of a nonlinear, asymmetric bubble oscillator (Keller–Miksis equation) in glycerine is investigated in the parameter space of its external excitation (frequency and pressure amplitude). The bi-parametric investigation revealed that the exoskeleton of the topology can be described as the composition of U-shaped subharmonics of periodic orbits. The fine substructure (higher-order ultra-subharmonic resonances) usually appearing via the well-known period n-tupling phenomenon is completely missing due to the high dissipation rate of the viscous liquid. Moreover, a complex internal structure of the subharmonics has been found, which are composed by interconnected bifurcation blocks (in a zig-zag pattern) each describing the skeleton of a shrimp-shaped domain. The employed numerical techniques are the combination of an in-house initial value problem solver written in C++/CUDA C to harness the high processing power of professional graphics cards, and the boundary value problem solver AUTO to compute periodic orbits directly regardless of their stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.