Abstract

This paper addresses a bi-objective welding shop scheduling problem (BWSSP) aiming to minimise the total tardiness and the machine interaction effect. The BWSSP is a special flow-shop scheduling problem (FSP) which is characterised by the fact that more than one machine can process on one job at a certain stage. This study analyses the operation of a structural metal manufacturing plant, and includes various aspects such as job sequence, machine-number-dependent processing time, lifting up time, lifting down time and different delivery time. A novel mixed-integer programming model (MIPM) is established, which can be used to minimise the delayed delivery time and the total machine interaction effect. One machine interaction effect formula is given in this paper. In order to solve this BWSSP, an appropriate non-dominated sorting Genetic Algorithm III (NSGAIII), embedded with a restarted strategy (RNSGAIII), is proposed. The restarted strategy, which can increase the diversity of the solutions, will be triggered with a restart probability. Following the iterative process, an effective strategy is applied to reduce the interaction effect penalty, on the premise that the makespan will remain unchanged. Total five algorithms, namely NSGAII, NSGAIII, harmony search algorithm (HSA), strength Pareto evolutionary algorithm (SPEA2), and RNSGAIII are utilised to solve this engineering problem. Numerical simulations show that the improved RNSGAIII outperforms the other methods, and the Pareto solution distribution and diversity, in particular, are significantly improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call