Abstract
In this paper, the problem of hybrid flow shop scheduling with common due dates (HFSCDD) is studied, and the objectives are to minimize the total waiting time and the total earliness/tardiness issues that arise. This study was motivated by a real-life shop floor, with the predefined goal of meeting the requirements of the final product in many manufacturing industries. Where the final product is assembled from multiple components and, the assembly is only initiated when all components of the product are complete in number. These interrelated components have common due dates. In this study, we developed a mathematical model of HFSCDD which made up of “n” jobs that were processed in “m” machines, located on “I” stages by taking into consideration the common due dates. This problem is classified as being NP-hard, and so an efficient modified genetic algorithm is developed to solve it. The proposed modify GA is developed based on the NSGA II method for large sized problems. The results of the proposed algorithm have been compared with PSO and GA algorithms and showed that the proposed algorithm achieved better performance than existing solutions, since the waiting time and the earliness/tardiness are significantly reduced. This is facilitated by the simultaneous production of components for the same product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.