Abstract

Achieving robust electrical contacts is crucial for realizing the promise of monolayer 2D semiconductors such as semiconducting transition metal dichalcogenides (s-TMDs) in electronics. Despite recent breakthroughs, a gap remains between the experimental and theoretical understanding of metal-s-TMDs contacts. This study explores bismuth semimetal contacts to monolayer MoSe2, using a platform that minimizes experimental sources of uncertainty; we combine contact-front and contact-end measurements to measure key parameters like specific resistivity (ρc) and transfer length (Lt). We find that the resistivity of MoSe2 under the contacts is enhanced due to charge transfer that can be modeled using a self-consistent approach. In contrast, ab initio calculations of the interlayer charge transfer rate are inconsistent with the measured value of ρc, highlighting the need for new theoretical approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.