Abstract
The main goal of this work is the identification of emotional hints from speech. Machine learning researchers have analysed sets of acoustic parameters as potential cues for the identification of discrete emotional categories or, alternatively, of the dimensions of emotions. However, the semantic information gathered in the text message associated to its utterance can also provide valuable information that can be helpful for emotion detection. In this work this information is included within the acoustic information leading to a better system performance. Moreover, it is noticeable the use of a corpus that include spontaneous emotions gathered in a realistic environment. It is well known that emotion expression depends not only on cultural factors but also on the individual and on the specific situation. Thus, theconclusions extracted from the present work can be more easily extrapolated to a real system than those obtained from a classical corpus with simulated emotions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.