Abstract

BackgroundOptimal ventilation strategies during cardiopulmonary resuscitation are still heavily debated and poorly understood. So far, no convincing evidence could be presented in favour of outcome relevance and necessity of specific ventilation patterns. In recent years, alternative models to the guideline-based intermittent positive pressure ventilation (IPPV) have been proposed. In this randomized controlled trial, we evaluated a bi-level ventilation approach in a porcine model to assess possible physiological advantages for the pulmonary system as well as resulting changes in neuroinflammation compared to standard measures.MethodsSixteen male German landrace pigs were anesthetized and instrumented with arterial and venous catheters. Ventricular fibrillation was induced and the animals were left untreated and without ventilation for 4 minutes. After randomization, the animals were assigned to either the guideline-based group (IPPV, tidal volume 8–10 ml/kg, respiratory rate 10/min, FiO21.0) or the bi-level group (inspiratory pressure levels 15–17 cmH2O/5cmH2O, respiratory rate 10/min, FiO21.0). Mechanical chest compressions and interventional ventilation were initiated and after 5 minutes, blood samples, including ventilation/perfusion measurements via multiple inert gas elimination technique, were taken. After 8 minutes, advanced life support including adrenaline administration and defibrillations were started for up to 4 cycles. Animals achieving ROSC were monitored for 6 hours and lungs and brain tissue were harvested for further analyses.ResultsFive of the IPPV and four of the bi-level animals achieved ROSC. While there were no significant differences in gas exchange or hemodynamic values, bi-level treated animals showed less pulmonary shunt directly after ROSC and a tendency to lower inspiratory pressures during CPR. Additionally, cytokine expression of tumour necrosis factor alpha was significantly reduced in hippocampal tissue compared to IPPV animals.ConclusionBi-level ventilation with a constant positive end expiratory pressure and pressure-controlled ventilation is not inferior in terms of oxygenation and decarboxylation when compared to guideline-based IPPV ventilation. Additionally, bi-level ventilation showed signs for a potentially ameliorated neurological outcome as well as less pulmonary shunt following experimental resuscitation. Given the restrictions of the animal model, these advantages should be further examined.

Highlights

  • Cardiac arrest and cardiopulmonary resuscitation (CPR) are regularly encountered scenarios in clinical, as well as pre-hospital situations

  • Constant anesthesia was maintained during the entire experiment using propofol and fentanyl infusions, a base ventilation was established (6–8 ml/kgBW, PEEP 5 cmH2O, peak inspiratory pressure of 40 cmH2O, adapted respiratory rate to adequate CO2 levels) and central venous and arterial access was established under ultra sound guidance (Ruemmler et al, 2018)

  • There were no significant differences in haemodynamic values between the two groups at any given time point (Table 1)

Read more

Summary

Introduction

Cardiac arrest and cardiopulmonary resuscitation (CPR) are regularly encountered scenarios in clinical, as well as pre-hospital situations. Several alternatives to the standard intermittent positive pressure ventilation (IPPV) method with a fixed respiratory rate (RR) of 10 breaths per minute have been proposed. Alternative models to the guideline-based intermittent positive pressure ventilation (IPPV) have been proposed. In this randomized controlled trial, we evaluated a bi-level ventilation approach in a porcine model to assess possible physiological advantages for the pulmonary system as well as resulting changes in neuroinflammation compared to standard measures. While there were no significant differences in gas exchange or hemodynamic values, bi-level treated animals showed less pulmonary shunt directly after ROSC and a tendency to lower inspiratory pressures during CPR. Given the restrictions of the animal model, these advantages should be further examined

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.