Abstract

The diagnosis of cancer based on gene expression profile data has attracted extensive attention in the field of biomedical science. This type of data usually has the characteristics of high dimensionality and noise. In this paper, a hybrid gene selection method based on clustering and sparse learning is proposed to choose the key genes with high precision. We first propose a filter method, which combines the k-means clustering algorithm and signal-to-noise ratio ranking method, and then, a weighted gene co-expression network has been applied to the reduced data set to identify modules corresponding to biological pathways. Moreover, we choose the key genes by using group bridge and sparse group lasso as wrapper methods. Finally, we conduct some numerical experiments on six cancer datasets. The numerical results show that our proposed method has achieved good performance in gene selection and cancer classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.