Abstract

Guided tissue regeneration (GTR) membranes have great potential to promote periodontal tissue regeneration and reestablishment. However, the regeneration potential and microbial infection resistance of current GTR membranes still need to be improved. Here, a bi-layered nanofibrous membrane on the basis of poly (lactic-co-glycolic acid) (PLGA)/gelatin with osteogenic and antibacterial functions was fabricated for periodontal tissue regeneration. The antimicrobial layer (AL) of the bi-layered nanofibrous membrane was composed of nanofibrous PLGA/gelatin nanofibers loaded with nano-silver (nAg), while the osteoconductive layer (OL) of the nanofibrous membrane consisted of PLGA/gelatin nanofibers loaded with nano-hydroxyapatite (nHA). The bi-layered nanofibrous membrane was examined by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometry (XPS) and X-ray diffractometry (XRD). The results showed that nHA and nAg particles were well evenly loaded or embedded in PLGA/gelatin nanofibers. The cell culture experiments suggested that the bi-layered nanofibrous membrane possessed good cytocompatibility and the OL of the bi-layered nanofibrous membrane possessed an enhanced osteogenic capacity for human osteoblast-like cells (MG63), which was verified by the good cell viability and the increased alkaline phosphatase (ALP) activity, respectively. The results of in vitro antimicrobial study displayed that the AL of the bi-layered nanofibrous membrane possessed an effective antibacterial capability. In conclusion, the prepared bi-layered nanofibrous membrane with osteogenic and antibacterial functions may have great potential for periodontal tissue regeneration and reestablishment.[Formula: see text].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.