Abstract

Abstract In our paper, the theory of bi-integrable and tri-integrable couplings is generalized to the discrete case. First, based on the six-dimensional real special orthogonal Lie algebra SO(4), we construct bi-integrable and tri-integrable couplings associated with SO(4) for a hierarchy from the enlarged matrix spectral problems and the enlarged zero curvature equations. Moreover, Hamiltonian structures of the obtained bi-integrable and tri-integrable couplings are constructed by the variational identities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.