Abstract

In this study, carbon quantum dots (C-QDs), prepared via hydrothermal-microwave procedures, were successfully combined with nanostructured titania (TiO2). The photocatalytic oxidation/reduction activity of the C-QDs/TiO2 composite films was evaluated in the decomposition of organic-inorganic contaminants from aqueous solutions under UV illumination. Physicochemical characterizations were applied to investigate the crystal structure of the carbon quantum dots and the composites. It was found that the prepared C-QDs/TiO2 composites had great contribution to the photocatalytic reduction of hexavalent chromium (Cr+6) species and 4-Nitrophenol (PNP) as well as to the photocatalytic oxidation of methylene blue (MB) and Rhodamine B (RhB) dyes. The mechanism of the photocatalytic reaction was studied with trapping experiments, revealing that the electron (e−) radical species were powerfully supported for the photocatalytic reduction of Cr+6 and PNP and the holes (h+) are the main active species for the photocatalytic oxidation reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.