Abstract

We investigated the influence of transforming growth factor-beta (TGF-beta) on DNA synthesis in human fetal fibroblasts, as measured by the incorporation of [3H]thymidine and cell replication. In serum-free medium, without additional peptide growth factors, TGF-beta had no action on thymidine incorporation. However, in the presence of 0.1% v/v fetal calf serum, TGF-beta exhibited a bi-functional action on the cells. A dose-dependent stimulation of [3H]thymidine incorporation, and an increase in cell number, occurred with fibroblasts established from fetuses under 50 g body weight, with a maximum stimulation seen at 1.25 ng/ml. For fibroblasts from fetuses of 100 g or greater body weight, TGF-beta caused a dose-related decrease in thymidine uptake with a maximal inhibition at 2.5 ng/ml, and a small decrease in cell number. When DNA synthesis was stimulated by the addition of somatomedin-C/insulin-like growth factor I, epidermal growth factor, or platelet-derived growth factor, their actions were potentiated by the presence of TGF-beta on cells derived from fetuses under 50 g body weight, but inhibited on cells obtained from the larger fetuses weighing more than 100 g. Similar results were found for changes in cell number in response to TGF-beta when stimulated by SM-C/IGF I. The ability of TGF-beta to modulate [3H] thymidine incorporation did not involve a change in the time required for growth-restricted cells to enter the S phase of the replication cycle. These data suggest that TGF-beta may exert either a growth-promoting or growth-inhibiting action on human fetal connective tissues in the presence of other peptide growth factors, which is dependent on fetal age and development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.