Abstract

Monitoring exocellular adenosine-5'-triphosphate (ATP) is a demanding task but the biosensor development is limited by the low concentration and rapid degradation of ATP. Herein, we developed a simple yet effective biosensor based on ZIF-67 loaded with bi-enzymes of glucose (GOx) and hexokinase (HEX) for effective detectionof ATP. In the confined space of the porous matrix, the bi-enzymes competed for the glucose substrate in the presence of ATP, facilitating the biosensor to detect low ATP concentrations down to the micromole level (3.75μM) at working potential of 0.55V (vs. Ag/AgCl). Furthermore, ZIF-67 with cobalt served as a porous matrix to specifically adsorb ATP molecules, allowing it to differentiate isomers with sensitivity of 0.53 nA/μM, RSD of 5.4%, and recovery rate of 93.3%. We successfully applied the fabricated biosensor to measure ATP secreted from rat PC12 cells in the pericellular space thus realizingtime-resolving measurement. This work paved the path for real-time monitoring of ATP released by cells, which will aid in understanding tumor cell glycolysis and immune responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call