Abstract
Monitoring exocellular adenosine-5'-triphosphate (ATP) is a demanding task but the biosensor development is limited by the low concentration and rapid degradation of ATP. Herein, we developed a simple yet effective biosensor based on ZIF-67 loaded with bi-enzymes of glucose (GOx) and hexokinase (HEX) for effective detectionof ATP. In the confined space of the porous matrix, the bi-enzymes competed for the glucose substrate in the presence of ATP, facilitating the biosensor to detect low ATP concentrations down to the micromole level (3.75μM) at working potential of 0.55V (vs. Ag/AgCl). Furthermore, ZIF-67 with cobalt served as a porous matrix to specifically adsorb ATP molecules, allowing it to differentiate isomers with sensitivity of 0.53 nA/μM, RSD of 5.4%, and recovery rate of 93.3%. We successfully applied the fabricated biosensor to measure ATP secreted from rat PC12 cells in the pericellular space thus realizingtime-resolving measurement. This work paved the path for real-time monitoring of ATP released by cells, which will aid in understanding tumor cell glycolysis and immune responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Microchimica Acta
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.