Abstract

Superconducting magnetic energy storage (SMES) is basically a DC current energy storage technology which stores energy in the form of magnetic field. The DC current flowing through a superconducting coil in a large magnet creates the magnetic field. Because of its fast response during charging and discharging, ability of injecting/absorbing real or reactive power, high storage efficiency, reliability and availability, the SMES technologies are used in power system transmission control and stabilization, and power quality improvement. Generally, an SMES consists of the superconducting coil, the cryogenic system, and the power conversion system. The power conversion system normally uses a power electronic converter as an interface between the coil and AC output. This converter is needed to act as the boost converter during DC side to AC side power flow since the storage suffered from lower input voltage magnitude. On the other hand, the converter is required to work as buck converter during reverse power flow. So the converter must be having bidirectional power flow capability because the need to charge and discharge the coil. The bi-directional Z-source inverter is a new topology, which provides the circuit with bi-directional power flow capacity. This inverter can overcome the limitations of the basic Z-source inverter and be used as an interface between energy storage and utility. A novel modified space vector pulse width modulation (SVPWM) algorithm for bi-directional Z-source inverter is developed in this work, which improves the voltage gain during the boost mode. In the proposed modified SVPWM, four shoot-through states are assigned to each phase within zero state. So zero voltage time period is diminished for generating a shoot-through time, and active states are unchanged. Using MATLAB, the models of the bi-directional Z-source inverter based SMES is established, and the simulation tests are performed to evaluate the system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.