Abstract

Using a laboratory-scale plasma device, plasma-driven and gas-driven permeation of hydrogen through a ferritic steel alloy: F82H has been investigated under some of the DEMO-relevant conditions. The steady state plasma-driven permeation flux has been found to be strongly affected by the variation in upstream surface morphology resulted from plasma bombardment. The activation energy of permeability for gas-driven permeation has been estimated to be ∼ 0.5 eV, which is close to the result of plasma-driven permeation. Gas-driven permeation can occur in the opposite direction of plasma-driven permeation, which then results in an increase in first wall recycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.