Abstract

The bi-directional relay channel is the natural extension of a three-terminal relay channel where node a transmits to node b with the help of a relay r to allow for two-way communication between nodes a and b. That is, in a bi-directional relay channel, a and b wish to exchange independent messages over a shared channel with the help of a relay r. The rates at which this communication may reliably take place depend on the assumptions made on the relay processing abilities. We overview information theoretic limits of the bi-directional relay channel under a variety of conditions, before focusing on half-duplex nodes in which communication takes place in a number of temporal phases (resulting in protocols), and nodes may forward messages in four manners. The relay-forwarding considered are: Amplify and forward (AF), decode and forward (DF), compress and forward (CF), and mixed forward. The last scheme is a combination of CF in one direction and DF in the other. We derive inner and outer bounds to the capacity region of the bi-directional relay channel for three temporal protocols under these four relaying schemes. The first protocol is a two phase protocol where a and b simultaneously transmit during the first phase and the relay r alone transmits during the second. The second protocol considers sequential transmissions from a and b followed by a transmission from the relay while the third protocol is a hybrid of the first two protocols and has four phases. We provide a comprehensive treatment of protocols in Gaussian noise, obtaining their respective achievable rate regions, outer bounds, and their relative performance under different SNR and relay geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call