Abstract

Let G = (V, E) be a simple and connected graph. For each x ∈ V(G), it is associated with a vector pair (a, b), denoted by S x , corresponding to subset S = {s1 , s2 , ... , s k } ⊆ V(G), with a = (d(x, s1 ), d(x, s2 ), ... , d(x, s k )) and b = (δ(x, s1 ), δ(x, s2 ), ... , δ(x, s k )). d(v, s) is the length of shortest path from vertex v to s, and δ(v, s) is the length of the furthest path from vertex v to s. The set S is called the bi-resolving set in G if S x ≠ S y for any two distinct vertices x, y ∈ V(G). The bi- metric dimension of graph G, denoted by β b (G), is the minimum cardinality of the bi-resolving set in graph G. In this study we analyze bi-metric dimension in the antiprism graph (A n ). From the analysis that has been done, it is obtained the result that bi-metric dimension of graph A n , β b (A n ) is 3. Keywords: Antiprism graph, bi-metric dimension, bi-resolving set. .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.